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SUMMARY

The problem considered is that of rectilinear motion with variable

velocity. The paper gives, by an elementary construction, a system of

coordinates which is conformal in the vicinity of the axis of motion.

By a particular choice of the scale relation, such restricted conformal

transformations can be made to reduce to the Lorentz transformation

everywhere in the case of uniform velocity and locally in the case of

variable velocity.

INTRODUCTION

The use of Lorentz transformations when the velocity v is a function

of the time leads to a nonuniform correspondence of events between accel-

erated coordinate systems. A uniform correspondence can be achieved,

however, by a simple generalization of the Lorentz formula to a

transformation of the type known as conformal.

Extension of the theory of relativity by conformal transformations

was considered many years ago by H. Bateman (ref. i). Such transformations

preserve a constant velocity of light even during accelerated motions.

It seems, however, that such transformations, if applied to the whole of

space, are consistent only with special types of motion. In the present

paper an extension of the theory by conformal transformations of the

simplest possible type, restricted to the vicinity of the axis of motion,

is suggested. Such restricted conformal transformations can be made to

reduce to the Lorentz transformation everywhere in the case of constant

velocity, and locally in the case of variable velocity.

The paper gives an elementary (though somewhat indirect) derivation

of the coordinates from the wave pattern formed by electromagnetic

signals. In view of the simplicity of the results it seemed unnecessary

to translate them into the more concise language of differential geometry.



CONSTRUCTIONOFA CONFORMAL(OORDINATESYSTEM
BYMEANSOFINTERFERING_AVESIGNALS

In the Miche!son-Morley experiment, an electromagnetic oscillator
and a mirror are arranged on a rigid reference body B so as to produce
an interfering wave system. Since the waves returned by the mirror are
of the samefrequency as those emitted by the oscillator, a system of
standing waves results.

Wemayproduce the samewave system _y meansof two oscillators at
Xp and xq on the x axis in an A system which moves relatively to B.
Here the waves returned by the upstream o_cillator mayhave a different
frequency than those emitted by the downstreamoscillator. The inter-
ference pattern will then drift in the direction of the line joining the
two oscillators. Such an interference pattern moving at the velocity v
is of course a standing wave in the B system. The difference in
frequency is then related to the Doppler _hift as observed from system A.

If we imagine Einstein's clock synchronization experiments (ref. 2)
to be carried out continuously, then thes( , experiments will again create
a standing wave system in which the phase of a clock is identified with
the phase of the electromagnetic wave and the length of a measuring rod
(or the spacing between the clocks) is identified with the wave length.

Figure i showsan x,t diagram of t1_eclock experiments interpreted
as an interfering wave pattern. For conw_niencethe x and t scales are
chosen so that the velocity of light is _ity. The rectangular x,t
axes are those of system A. Maximaand r_inima of the downstreammoving
waves are along lines sloping to the left with increasing t, or along
lines x + t = constant. The upstream mo"ing waves are identified
similarly with the lines x - t = constan-_.

The maximaand minima of the standing waves in the B system are
diagonals of the rectangles formed by the lines x - t = constant and
x + t = constant. The LorenSz transforma_ion is, in these terms,

x' + t' = _l-v ix+t)

x' - t' _ ix-t)
:

(i)

In system B (x',t') we may isolate _wo clocks C l and C2. A signal

from C l at t l' arrives at C2 at the time t2' and is reflected



back to CI, arriving there at the time t3'. By setting C2 to the
i (t I , ,)time t2' = _ + t 3 we express the constancy of the velocity of

light in the moving system.

Nowit is clear that the velocity of light will remain constant and
that the Michelson-Morley experiment would show this result in any coor-
dinate system constructed from interfering waves of both families. Hence
as the equation of such a transformation we maywrite, disregarding for
the moment y and z,

x' + t' = F(x+t)

x' - t' = G(x-t)

(2)

Figure 2 shows a curvilinear coordinate system constructed in this

way. By starting with the Doppler variation of the frequencies received

at the points Xp and Xq we obtain a network of lines at 45 ° , but with

variable spacing. The interference pattern then forms a family of

"sloshing" waves with the velocity of the wave crests variable from point

to point. In a coordinate system tied to such wave crests the result of

the Michelson-Morley experiment is always the same. It is a simple matter

to verify that the coordinate system of figure 2 preserves a constant

velocity of light.

If we denote

F' (x+t) = f

G'(x-t) = g

(3)

then the velocity v of B relative to A is given by

g_f
dx = v = (4)

'=const g+f



satisfied. Evidently Milne's relation cannot be maintained by conformal
transformations that are locally tangent to the Lorentz transformation,
except in the case of uniform velocity.

Figure 3 illustrates the application of the present method to a
problem of accelerated rectilinear motion. If the path of a particle B
is given then it is only necessary to lay off from this path lines at
45° , spaced at equal intervals of the proper time as given by the
velocity v in conjunction with the restricted theory of relativity.
The intersections of these characteristic lin_s then determine the con-
tinuation of the coordinates throughout the _,t region.

Thus far our considerations have been restricted to the single space
direction x parallel to the direction of the velocity. If the constancy
of the velocity of light is to be maintained in all directions, then the
differential form of the transformation must remain.

_ds,2 = h2(x,y,z,t)(dxa+dy2+dz2-dt2) (io)

Generalization of the theory of relativity by transformations of the

group satisfying equation (i0) was considered by Bateman (ref. i) and

more recently by Infeld and Schild (ref. 4), Littlewood (ref. 5),

E. L. Hill (ref. 6), and others. It seems that the transformations of

this group are essentially limited in such a _ay that only certain

motions are consistent with a constant velocity of light throughout

space. However, if we restrict our attention to a small region in the

vicinity of the x axis, we may write

y': JTgy 1
Z v = _-g Z

(ii)

and then

(_ds '2) = fg(dx2+dy_+dz2-dt 2)
y2+z2_o

(12)

Hence a constant velocity of light can be maintained in the vicinity of

the axis throughout a variable motion.
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It is interesting to note (see fig. 3) that the coordinate distor-

tions or "gravitational waves" associated with the acceleration of

system B ultimately propagate away from the origin with the velocity

of light. The interpretation of these waves, as well as other dynamical

questions, will require an extension of the considerations given herein.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif., Apr. 9, 1959
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Figure 2.- Coordinates in which the vel_city of light is constant.
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Figure 3.- Continuation of Lorentz transformation along straight

characteristic lines.
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